

FUTURE STARTS IN GERMANY

WELCHES TECHNOLOGISCHE POTENTIAL STECKT IN PV MODULEN?

Fachforum Strom

Ronny Köhler Leiter Qualitätssicherung bei der Heckert Solar GmbH

Fachtagung "Energie Umwelt Zukunft", Leipzig, 18.06.2024

Heckert Solar

Firma & Portfolio

Motive für die
Weiterentwicklung

Was triggert die Weiterentwicklung der PV-Module? Technologisches
Potential

Welches technologische Potential steckt in PV-Modulen?

AUSBLICK

Bewertung und Einschätzung der Ansätze

AGENDA

1. FIRMA & PRODUKTPORTFOLIO

Heckert Solar: PV-Erfahrung seit über 20 Jahren am Standort Chemnitz

Xaver Trinkerl gründet die Heckert B.X.T. Solar GmbH in Chemnitz und entwickelt einen der weltweit ersten vollautomatischen Lötautomaten

Das erste polykristalline Heckert Solar PV-Modul läuft vom Band, aktuelle Kapazität liegt bei 6 MWp p.a.

Der Grundstein für das neue Werk an der Carl-von-Bach-Str. in Chemnitz ist gelegt. Aktuelle Kapazität 20 MWp p.a.

Herstellung von

1 Mio. Module jährlich,
aktuelle Kapazität ca. 400

MWp p.a.

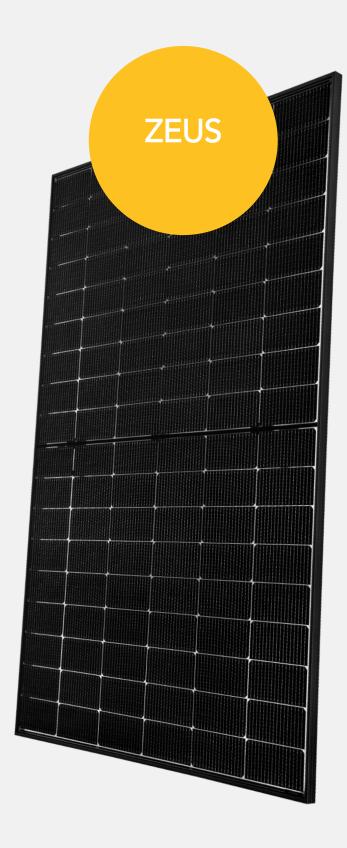
Heckert Solar: PV-Erfahrung seit über 20 Jahren am Standort Chemnitz

Heute

- 150 Mitarbeiter am Standort Chemnitz
- unabhängig & 100% familiengeführt
- Jahresumsatz > 100 Mio. EUR
- Über 20 Jahre PV-Fertigungserfahrung
- $\approx 3GW$ produzierte Solarleistung
- PV-Großhandel mit umfangreichem Sortiment vom Solarmodul über Speicher bis zum Dachhaken
- in Deutschland aber auch international etabliert
- deutschlandweit ausgebautes Installateur-Partner-Netzwerk mit über 1.500 Kunden

Produktportfolio

Solarmodule | PV-Wechselrichter | PV-Speicher | Großspeicher | Gestelltechnik | Smart Home Devices | Systemhandel PV-Zubehör (Verkabelung, Optimierer, Ü-Schutz...)



Unsere Kernkompetenz - Solarmodule

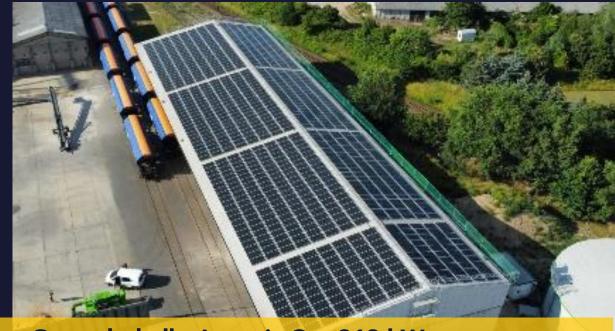
HECKERT SOLAR GMBH · 18.06.2024

Repowering Bundeskanzleramt 174kWp

Deutsche Werkstätten Dresden Hellerau 500kWp

Allianz Arena München 834kWp

Weingut Gleishorbach 214kWp


Kath. Kirche St. Franziskus Stuttgart 128kWp

Flughafen München 1,13MWp

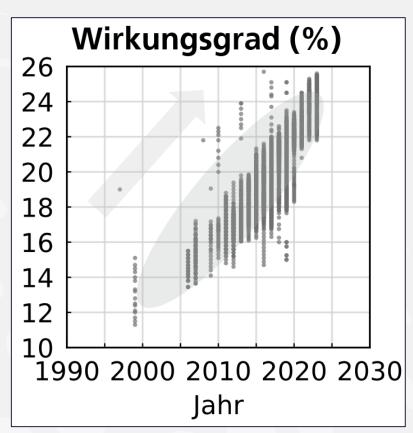
Freifläche an A72 Borna 12,6MWp

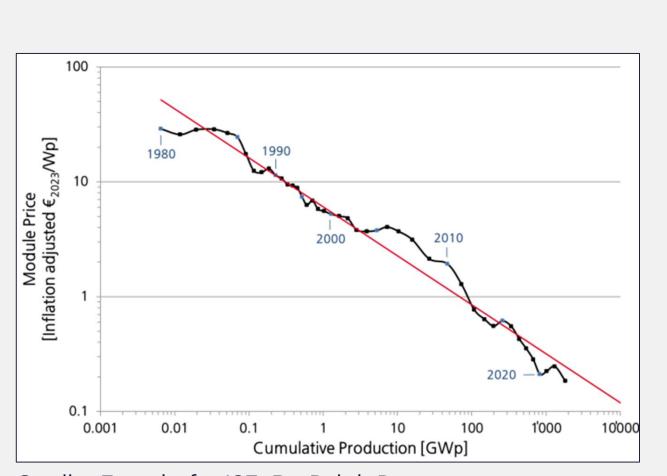
Gewerbehalle Agravis Ost 313 kWp

NeMo® 3.0 Module auf den Dächern der Leipziger Messe 924kWp

Was triggert die technologische Weiterentwicklung der PV-Module?

- 1. Preiskontrolle
- 2. Erhöhte Haltbarkeit & Zuverlässigkeit
- 3. Steigerung der Modulleistung & Moduleffizienz
- 4. Transportoptimierung




Abb.: Effizienzentwicklung

Solarzelle, Quelle: Fraunhofer ISE

Abb.: MES –System Fertigung Heckert Solar,

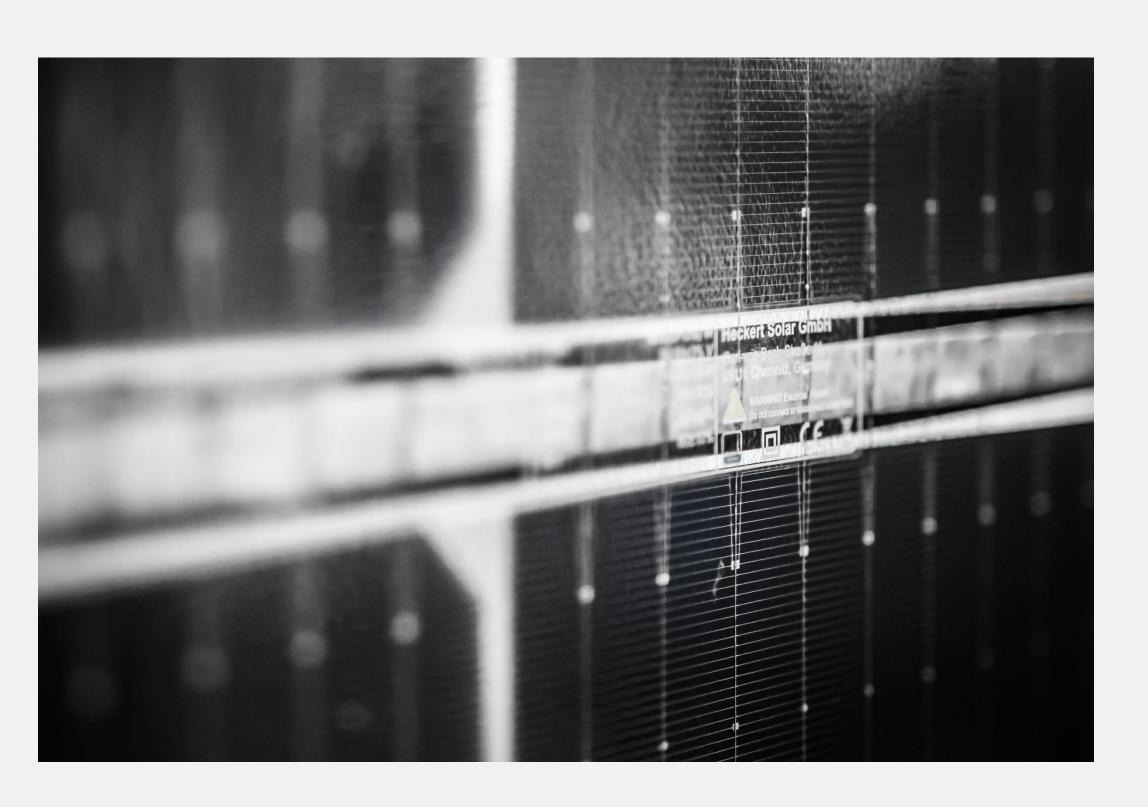
Werk Langenwetzendorf

Ziel: Senkung der Entstehungskosten

Quelle: Fraunhofer ISE, Dr. Ralph Preu

3. TECHNOLOGISCHES ENTWICKLUNGSPOTENTIAL

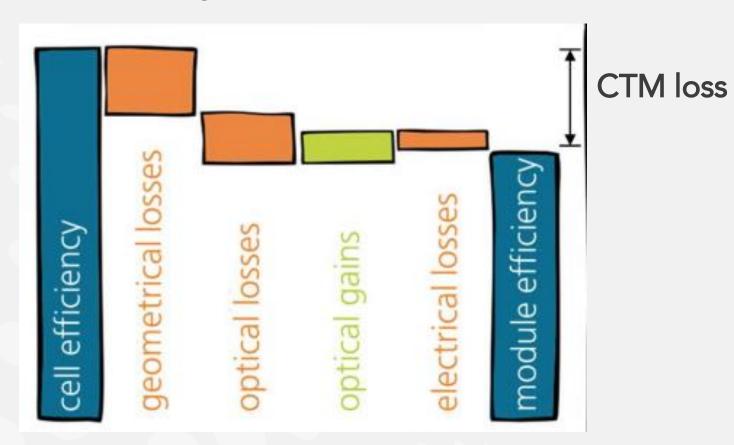
Technologisches Entwicklungspotential



1. Auf Modulebene

- > Gewinn- und Verlustmanagement
- > Reduzierung Widerstandverluste
- ➤ Inaktive Flächen reduzieren

2. Auf Zellebene


- > Zellformate
- > Zelltechnologie

Wichtigster Ansatz: Optimierung Gewinn- u. Verlustmanagement

- definiert im sog. CTM loss (cell-to-module)
 - --> Verluste von der eingesetzten Zelleleistung bis zur ausgegebenen Modulleistung
- > die eingesetzte Zellleistung ist aufgrund von verschiedenen Verlustmechanismen nicht 1:1 auf Moduleben verfügbar
- ➤ Unterteilung in:

Zellleistung 100%

- geometrische Verluste
- optische Verluste
- optische Gewinne
- elektrische Verluste

Modulleistung 100% - x

Differenz = CTM loss

Optimierung Gewinn- u. Verlustmanagement

- Einteilung der Einflussgrößen in sog. K-Faktoren
 - --> auf Modulebene bisher 15 Einflussfaktoren:

cell efficiency / power (@STC)	Summe Zellleistung initial (STC)
module margin k1	inaktive Fläche Modulrand
cell spacing k2	inaktive Fläche Zellzwischenraum
cover reflection k3	Reflexion Frontglas
cover absorption k4	Absorption Frontglas
cover/encapsulant reflection k5	Reflexion Einkapselungsmaterial
encapsulant absorption k6	Absorption Einkapselungsmaterial
interconnection shading k7	Verschattung Zellverbinder
cell/encapsulant coupling k8	optische Kopplung Zelle/Einkapselung
finger coupling k9	Reflexion Finger
interconnector coupling k10	Reflexion Zellverbinder
cover coupling k11	interne Reflexion Modulrückseite
cell interconnection k12	elektr. Widerstand Zellverbinder
string interconnection k13	elektr. Widerstand Stringverbinder
electrical mismatch k14	elektr. Fehlanpassung zwischen Zellen
junction box and cabling k15	Anschlussdose und Kabel
module efficiency / power (@STC)	Modulleistung (STC)

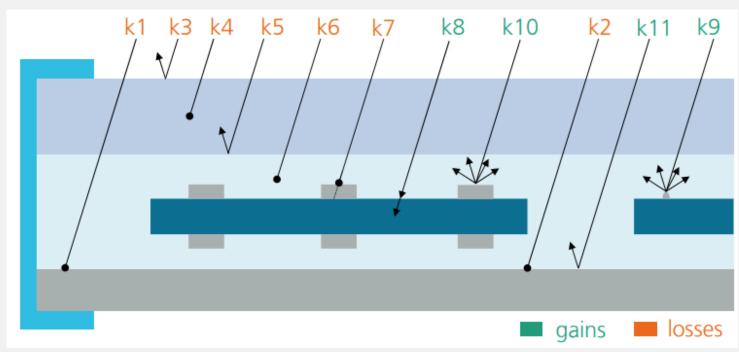
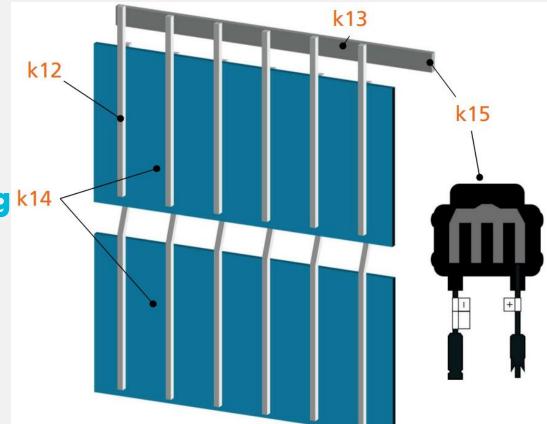
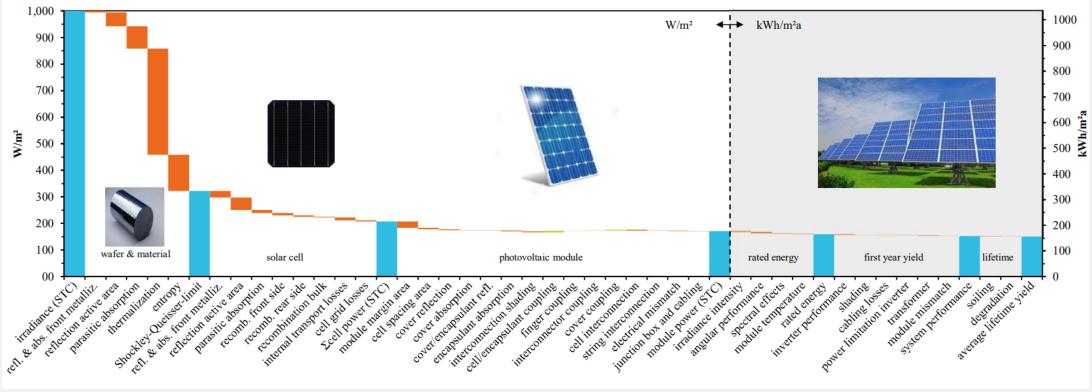



Abb.: K-Faktoren

Zielstellung: Minimierung der Verluste und Steigerung k14 < der Gewinne

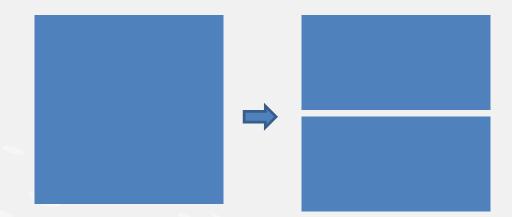
Gewinne

Verluste



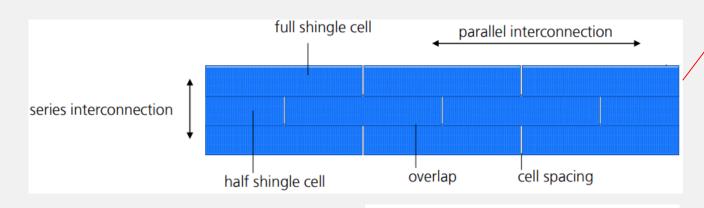
Optimierung Gewinn-u. Verlustmanagement

Auch eine ganzheitliche Betrachtung des Systems mittlerweile möglich

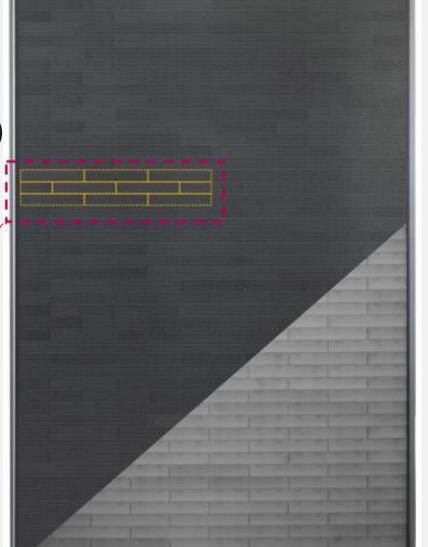

٢	Nominal cell efficiency / power (@STC)	Zelleffizienz / -leistung lt. Datenblatt
	pre-integration losses k0	Verluste aus Zellteilung, unangemessener Messung, initialer Degradation etc
	cell efficiency / power (@STC)	Summe Zellleistung initial (STC)
	module margin k1	inaktive Fläche Modulrand
	cell spacing k2	inaktive Fläche Zellzwischenraum
	cover reflection k3	Reflexion Frontglas
	cover absorption k4	Absorption Frontglas
	cover/encapsulant reflection k5	Reflexion Einkapselungsmaterial
	encapsulant absorption k6	Absorption Einkapselungsmaterial
STC-	interconnection shading k7	Verschattung Zellverbinder
	cell/encapsulant coupling k8	optische Kopplung Zelle/Einkapselung
	finger coupling k9	Reflexion Finger
	interconnector coupling k10	Reflexion Zellverbinder
	cover coupling k11	interne Reflexion Modulrückseite
	cell interconnection k12	elektr. Widerstand Zellverbinder
	string interconnection k13	elektr. Widerstand Stringverbinder
	electrical mismatch k14	elektr. Fehlanpassung zwischen Zellen
lon-STC	junction box and cabling k15	Anschlussdose und Kabel
r	module efficiency / power (@STC)	Modulleistung (STC)
-	temperature k21	Temperaturabhängigkeit der Solarzelle
	irradiance intensity k22	Änderungen der Intensität des einfallenden Lichts
	angular distribution k23	Änderungen der Winkelverteilung des einfallenden Lichts
	spectral mismatch k24	Änderungen des Spektrums des einfallenden Lichts
Yield - Shad Soili Moo	module efficiency / power (@non-STC)	Modulleistung (non-STC)
	Shading k31	Verschattung der Module
	Soiling k32	Verschmutzung der Module
	Module Mismatch k33	Elektr. Fehlanpassungen zwischen Modulen
	Inverter Clipping k34	Leistungsbegrenzung des Wechselrichters
	Self Consumption k37	Eigenverbrauch aktiver Komponenten
	AC Cabling k38	Elektrische Verluste in der Verkabelung der Module
	Transformer k39	Umwandlungsverluste Gleich- zu Wechselspannung
	First Year Yield	Ertrag des ersten Jahres (ohne Degradation)

Reduzierung Widerstandsverluste: Geteilte Zellen im "klassischen" Modullayout

- Fakten: Strom der Solarzellen ist flächenabhängig (Strom steigt proportional mit der Fläche)
- > Maßnahme: Zellen halbieren, Geteilte Zelle = halber Strom

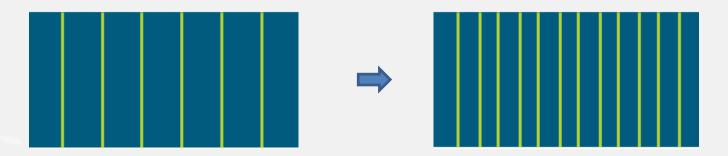

- ➤ Vorteil: halber Strom = nur ¼ elektrische Verluste

 Nachteil: im klassischen Layout maximal Halbierung möglich, da ab Drittelung eine kritische Anzahl an in Reihe verschalteter Zellen vorliegt --> HotSpot Gefahr!!!
- > Entwicklungspotential: Halbzellen im klassischen Modullayout umgesetzt, weiterer Ansatz "Schindelmatrixmodule"



Reduzierung Widerstandsverluste: Geteilte Zellen im "Schindelmatrixmodul"

- > Maßnahmen: mehrfache Zellteilung in kleine "Schindeln" und Verschaltung dieser
- > Vorteil:
 - --> 2-6 % höherer Modulwirkungsgrad (max. Flächennutzung, geringe Widerstandsverluste)
 - --> Bis zu 110% mehr Leistung bei Teilverschattung als klassische Halbzellenmodule
 - --> leicht anpassbar auf alle Formate
 - --> tolle Optik


- > Nachteil:
 - --> Stringertechnik extrem teuer und geringerer Durchsatz
 - --> Schindeln müssen geklebt werden
- > Entwicklungspotential:
 - --> für Anwendungsfälle mit flexiblen Abmessungen sinnvoll, aktuell zu teuer

Reduzierung Widerstandsverluste: Mehr Busbars

- Fakten: Widerstandsverluste sind quadratisch stromabhängig
- > Lösung: Mehr Verbinder pro Zelle, weniger Strom pro Verbinder

- > Vorteil:
 - --> geringere elektrische Verluste, Modulwirkungsgrad steigt
 - --> Bei Zellrissen wird die ausgefallene Zellfläche minimiert
- > Nachteil:
 - --> klassische Verstringung der ultra dünnen Multiwire schwierig
- > Entwicklungspotential: teilweise schon umgesetzt, eindeutiger Trend zu mehr Busbar erkennbar

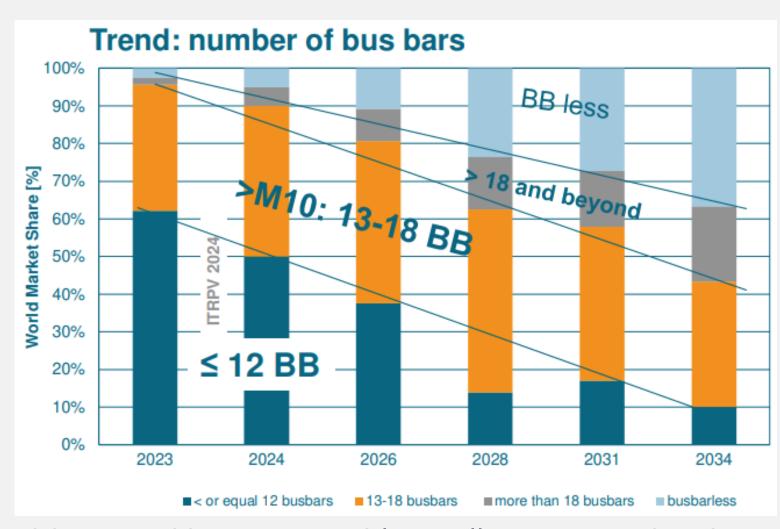


Abb.: Trend bei BB-Anzahl, Quelle ITRPV 15th Edition

Inaktive Fläche reduzieren: Erhöhung der Flächenleistung pro Einheit --> Modulgröße steigern

- > Fakten:
 - --> Modulgröße stieg historisch
- > Vorteil:
 - --> geringere Stückkosten
- ➤ Nachteil:
 - --> Module werden schwerer und unhandlicher
- > Trend:
 - --> Transportcontainer sind limitierender Faktor
 - --> Zellbreite u. Butterfly Verschaltung limitieren Breite
 - --> durch 2m² Grenze im Residential Bereich limitiert

ABER: 2m² Grenze soll auf 3m² erhöht werden!!

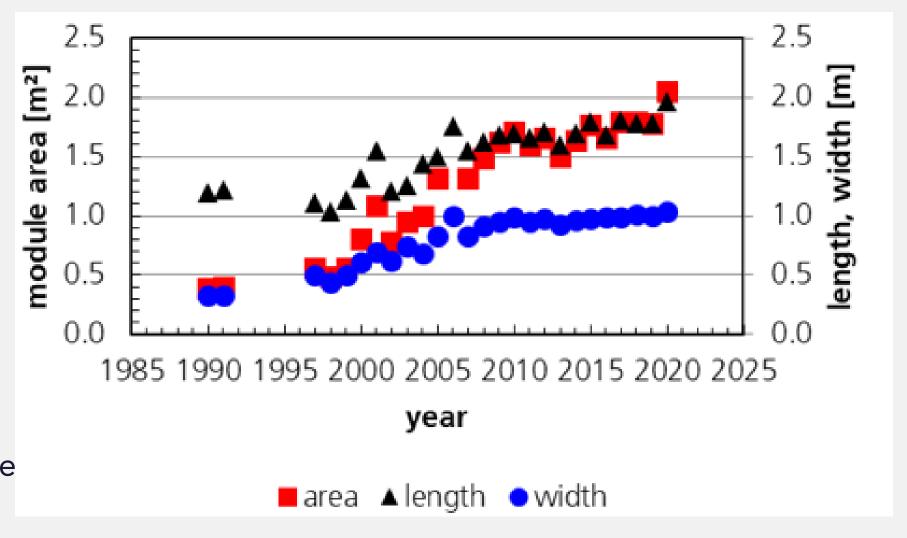
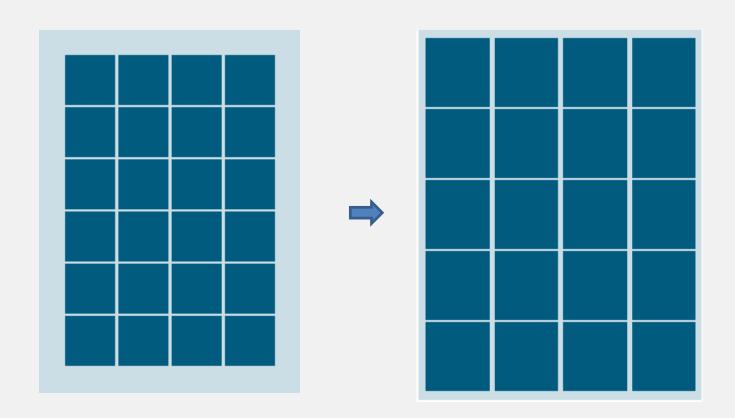


Abb.: Trend Modulgröße

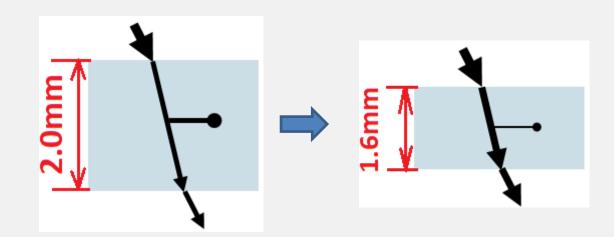
- > Entwicklungspotential:
 - --> Module ab 2025 wahrscheinlich in der Länge größer (~1.90m),Breite bleibt HECKERT SOLAR GMBH · 18.06.2024



Inaktive Fläche reduzieren: Optimierung Modulränder & Zellabstände

- > Maßnahmen:
 - --> Abstände zwischen Solarzellen werden reduziert

(String- u. Zellabstände)


- --> Randabstände werden minimiert
- > Vorteil:
 - --> mehr aktive Zellfläche pro Modul, d.h. mehr Modulleistung
 - --> Anpassungen einfach umzusetzen
- > Nachteil:
 - --> durch Mindestabstände in der IEC 61730 limitiert
 - --> Außenmaße sind fix, da Transportcontainer der limitierende Faktor ist
 - --> Zielkonflikte: Zuverlässigkeit und Prozessprobleme bereiten Modulhersteller ggf. Schwierigkeiten
 - (Z. Bsp. kleinere Fertigungstoleranzen führen so zu höherem Ausschuss in der Fertigung)
- > Entwicklungspotential: Umgesetzt und im Großen und Ganzen ausgereizt

Dünnere Gläser: Reduzierung der Glasdicke

- Maßnahmen: Reduktion der Glasdicke von 2 x 2.0mm bei Glas-Glas auf 2 x 1.6mm
- ➤ Vorteil:
 - --> Reduktion der BoM Kosten durch 20 % Materialeinsparung beim Glas
 - --> Leistungssteigerung Modul durch Verringerung der Transmissionsverluste (Licht muss durch weniger Material bis zur Zelle hindurch)

> Nachteil:

- --> Hagelbeständigeit unter Umständen schwächer
- --> 1.6mm Glas ist schwer zu härten, Fraunhofer ISE hat im Labor bereits eine Häufung von Glasbrüchen bestätigt
- --> mechanische Belastbarkeit (Schneelast) geringer
- > Entwicklungspotential:
 - --> wird sich weiter durchsetzen, in Asien schon häufig in der Massenfertigung eingesetzt
 - --> bisher nur bei Residential-Modulen und nicht bei Solarpark-Modulen beobachtet

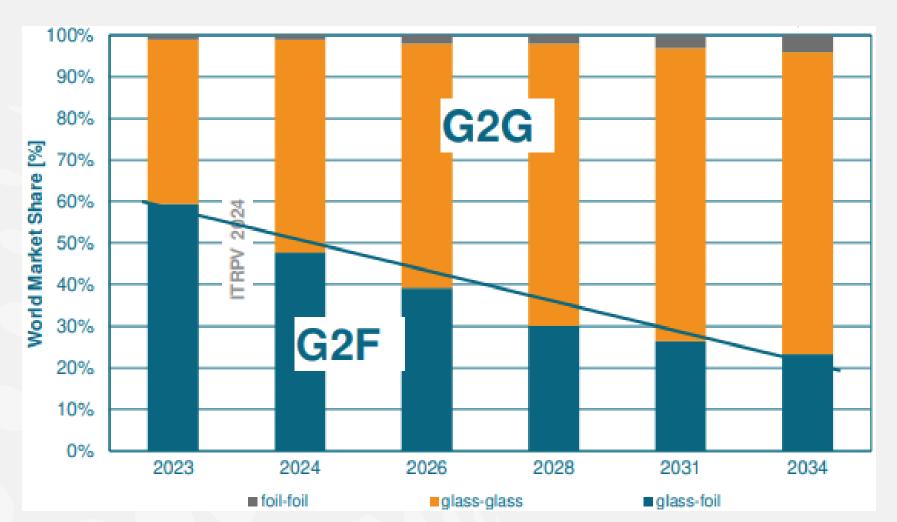
Solarzelle

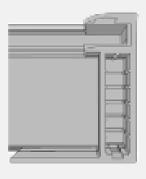
- > Maßnahmen:
 - --> Nutzung der Einstrahlung auf die Modulrückseite durch transparente Modulrückseite, i.d.R. Glas-Glas aber auch transparentes Backsheet
 - --> Rückseite der Zelle trägt zur Stromerzeugung bei
- ➤ Vorteil:
 - --> simple Lösung sorgt für deutliche Mehrleistung
 - --> neue Zelltypen (TOPCon, HJT) mit Bifazialität von bis zu 90-95%
- > Nachteil:
 - --> stark standortabhängig
 - --> Mehrertrag durch Rückseite in den meisten Fällen nur grob vorhersehbar

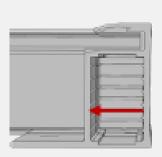
Abb.: Bifaziales Heckert ZEUS 1.0, Rückseite

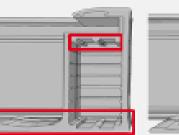
Bifazialität: Mehrleistung / Mehrertrag durch aktive Rückseite

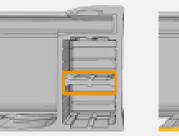
- > Entwicklungspotential:
 - --> Glas-Glas ab 2024 dominierend
 - --> deutlicher Trend hin zu Glas-Glas setzt sich fort




Abb.: Trend Glas-Glas/Gas-Folie, IRTPV 15th Edition

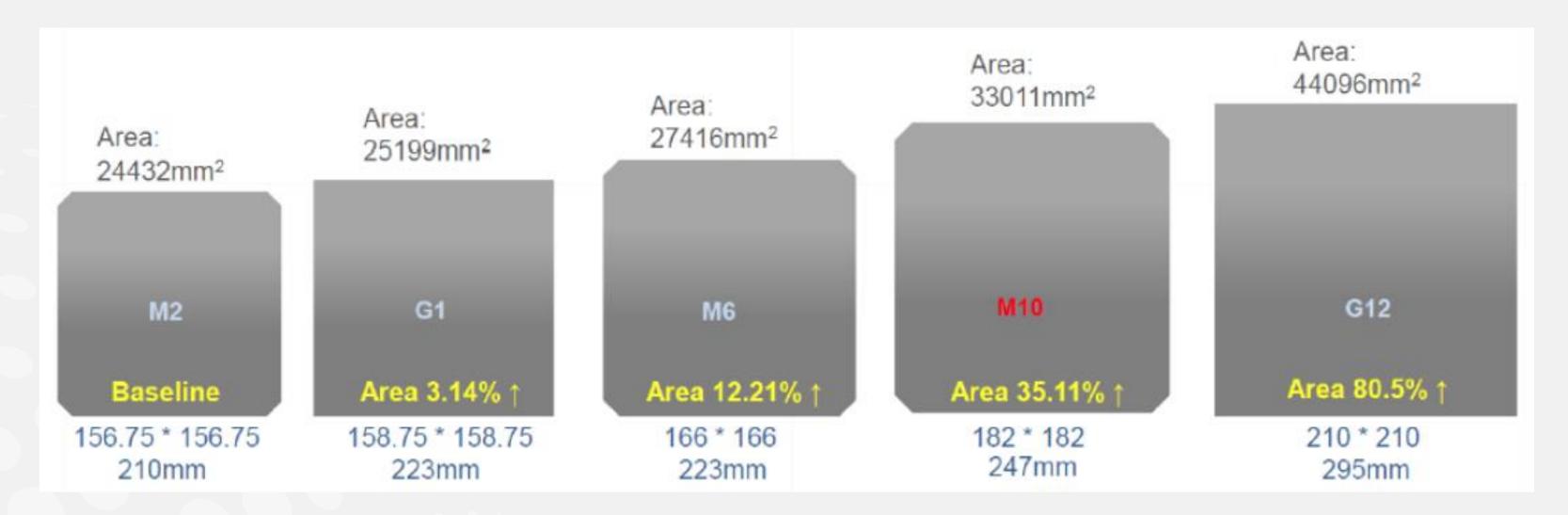



Optimierung Modulrahmen: Reduzierung Rahmenstärke, Änderung Material


- > Maßnahmen:
 - --> Reduzierung der Rahmenhöhe von 35mm auf 30mm
 - --> Änderung des Materials von Aluminium auf Kunststoff

- ➤ Vorteil:
 - --> Reduktion der BoM- Kosten: Aluminiumrahmen macht rund 20-25% der Modulkosten aus
 - --> Dünnere Rahmen = mehr Module pro Container (35mm = 806 Stk vs. 30mm = 936 Stk!)
- > Nachteil:
 - --> mechanische Stabilität der Module leidet deutlich (ML Test IEC 61215)
 - --> Gefahr der Versprödung und Vergilbung bei Kunststoffrahmen
- > Entwicklungspotential:
 - --> in Asien ist in der Massenfertigung der 30mm Rahmen mittlerweile Standard
 - --> Kunststoffrahmen ist ein Thema, mehrere Hersteller entwickeln und testen diesen

Inaktive Fläche reduzieren: Einsatz größerer Zellen & Zellformate


- > Maßnahmen:
 - --> durch größere Zellen werden inaktive Flächenanteile relativ kleiner
- ➤ Vorteil:
 - --> mehr aktive Zellfläche pro Modul durch weniger Zell- u. Stringzwischenräume => mehr Modulleistung
- > Nachteil:
 - --> durch größere Zellen steigt der Modulstrom (Impp >15A, Isc >16A)
 - --> einige kleinere Wechselrichter im Residential-Bereich sind am Limit
- > Entwicklungspotential:
 - --> aktuell viel Bewegung drin, seit 2024 Module mit G12R Zelle im großen Stil verfügbar und verbaut

Zellformat

--> aktuelle Formate sind M6 – G12

Quelle: Ueberblick-zu-erwartende-Wafergroessen-2021.png (1023×323) (ibc-blog.de)

Zellformat: Trends bei den Zellgrößen

- > M6 nur noch in marginalen Mengen, wird in 2024 voraussichtlich eingestellt
- > M10 derzeit Mainstream, in verschiedenen Ausführungen
- > G12 immer dominanter, ab 2031 Mainstream
 - --> persönliche Meinung:

G12 bereits in 2-3 Jahren Mainstream

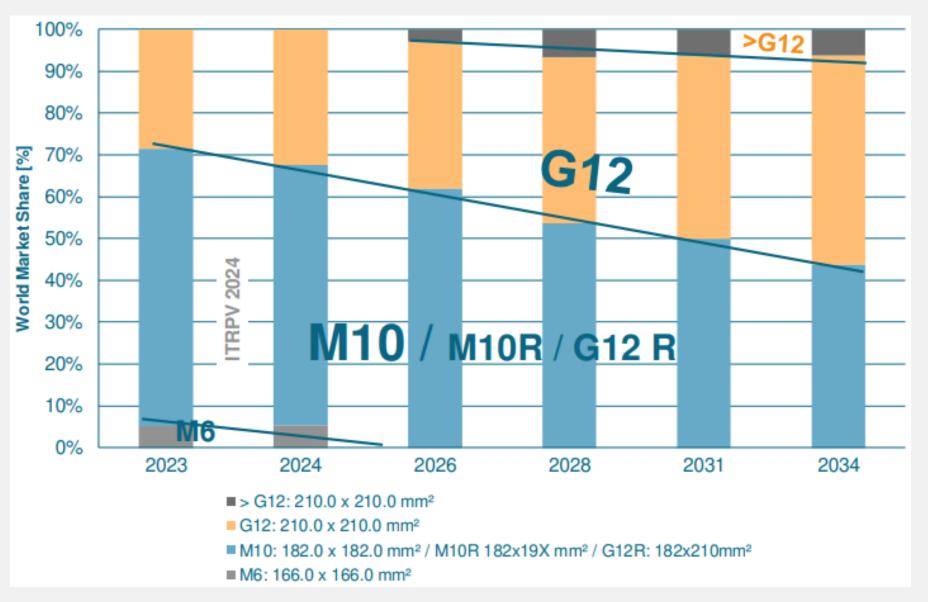


Abb.: Trend Zellgrößen, Quelle: ITRPV 15th Edition

Zellformate: aktuelles Geschehen und Entwicklungspotential

- Fakt ist: sehr viel Dynamik bei den Formaten vorhanden
- > Hintergrund für die teils "wilden" Anpassungen:
 - --> Steigerung der aktiven Zellfläche im Modul
 - --> Verwendung des Bestandsequipments der Wafer-/Zellhersteller
 - --> kostengünstigste Herstellung,d.h. den Verschnitt (Ecken) minimieren
- > Hauptziel:
 - --> maximale Zellgröße vs. Verschnitt finden, denn es kommt mittlerweile auf die x-te Nachkommastelle bei den Herstellungskosten an

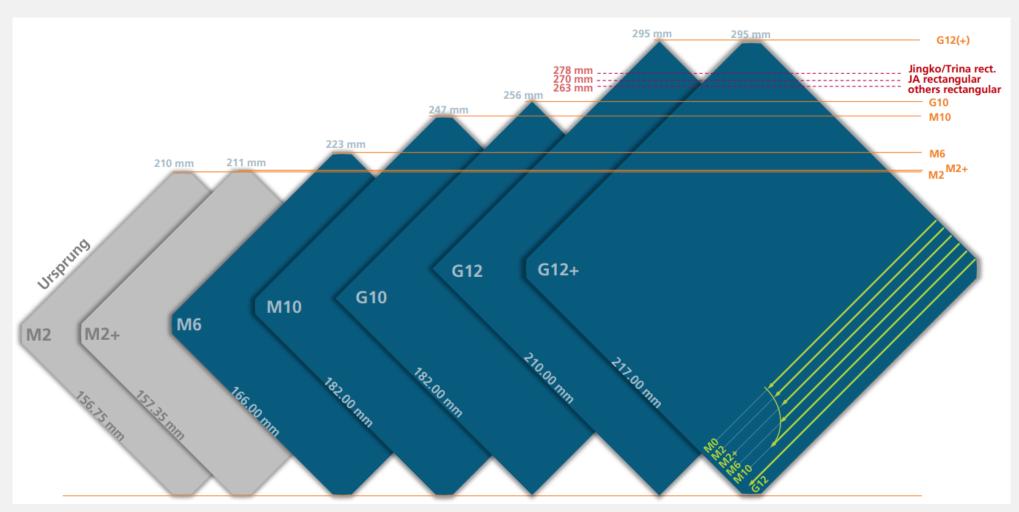
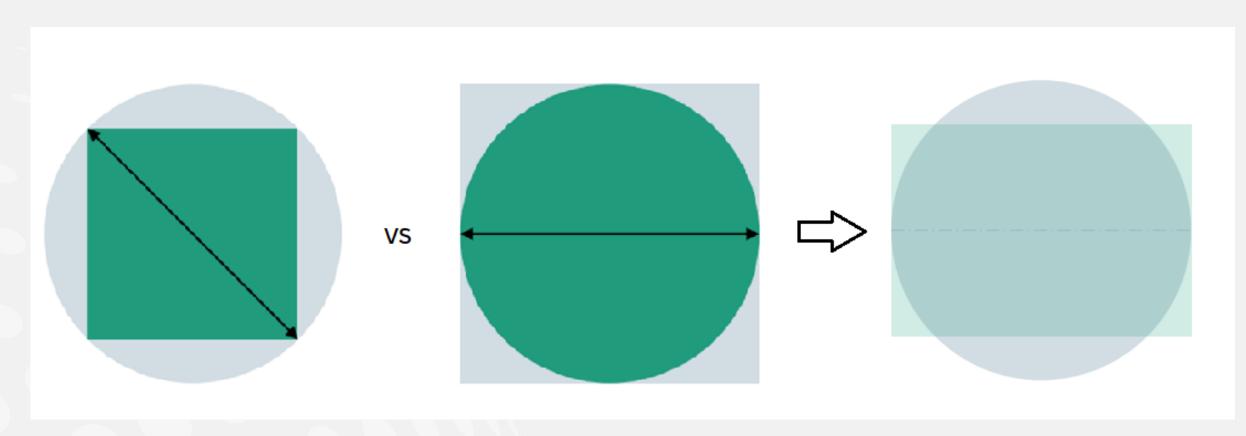


Abb.: Größenänderungen Wafer, Quelle: Fraunhofer ISE

Zellformate: Zielsetzung


> es wird versucht den Ingot optimal auszunutzen

Zellformate: Finden des Optimums

- > das Optimum liegt zwischen geometrisch quadratisch und rund
- bisher waren Wafer i.d.R. quadratisch
- resultierendes Optimum aus max. Zellfläche und wenig Verschnitt mündet in sog. "Rectangular Cells" (rechteckige Zellen)

Achtung:

Elektrische Werte ändern sich, Modulstrom > 16A

Zelltechnologie

- > Stetige Weiterentwicklung
- > 2023 noch von PERC dominiert, ab 2024 von TC abgelöst
- > Backcontact und Heterojunction mit moderaten Zuwächsen
- ➤ ab 2026 erste Mengen an Mehrschichtsolarzellen (Tandem)
- ➤ Voraussichtliche Aufteilung in 2024 lt. IRTPV Roadmap:

- PERC: 40%

- TOPCon 49%

- HJT: 8%

- Tandem: 0%

- Backcontact: 4%

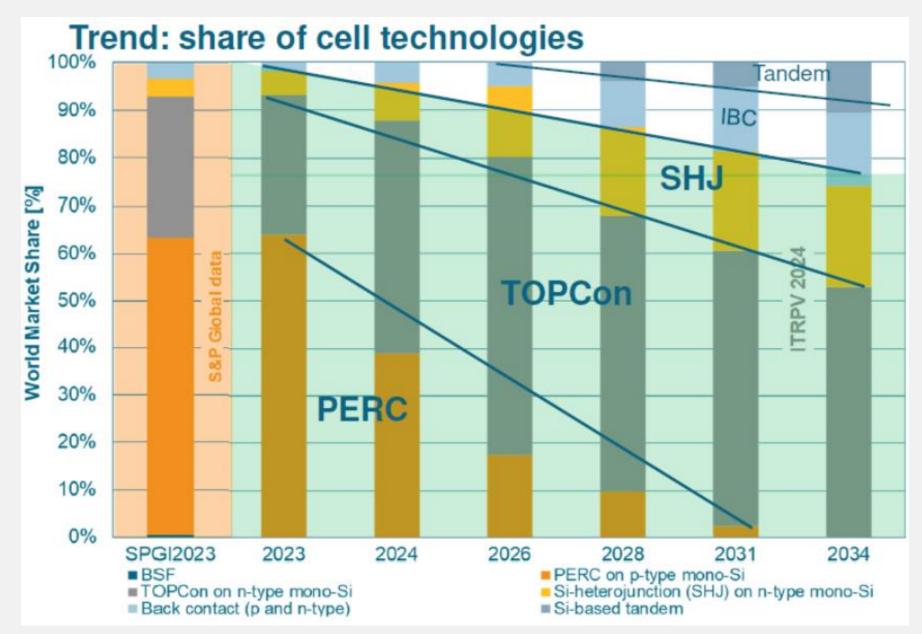


Abb.: Trend Zelltechnologien, Quelle: ITRPV 15th Edition

Zelltechnologie

- > Prognose 0.5% Effizienzsteigerung für Photovoltaik pro Jahr
- > PV Module werden immer effizienter: aktuell 25% Zelle

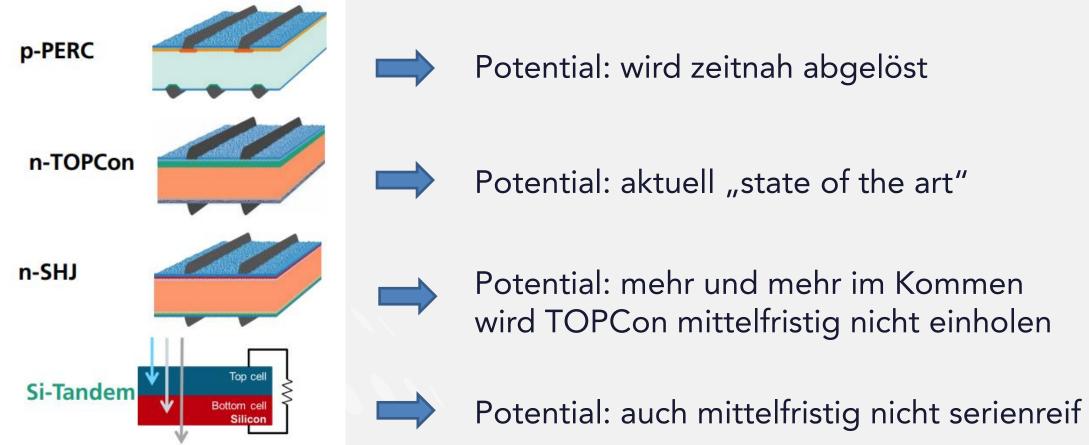
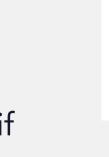



Abb.: schematische Darstellung Solarzellen Quelle: Fraunhofer ISE

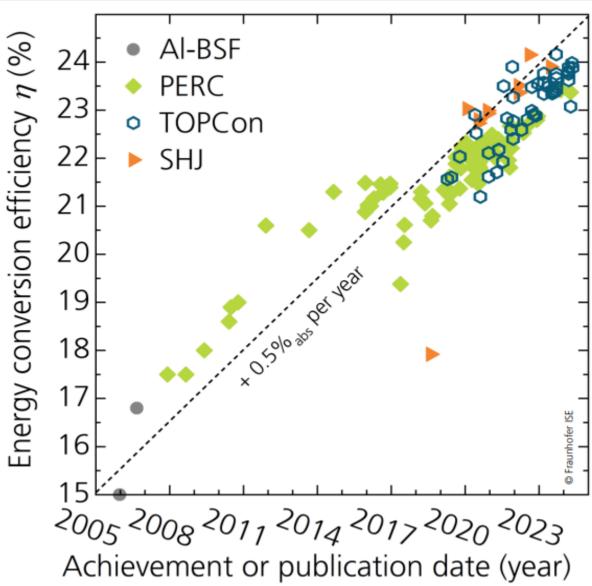


Abb.: Effizienzentwicklung Solarzelle Quelle: Fraunhofer ISE

Zelltechnologie: Tandem Mehrschichtsolarzellen sog. III-V-Halbleiter

Aufbau:

- --> Eine Tandem-Solarzelle ist eine mehrschichtige Solarzelle
- --> Mehrfachsolarzelle weist eine Abfolge von übereinander gestapelten Teilzellen aus Gallium-Indium-Phosphid (GaInP), Gallium-Arsenid (GaAs) und Silicium (Si) auf
- --> Die Schichten sind intern durch sogenannte Tunneldioden miteinander verbunden (verschaltet)
- --> Trick: die oberste Zelle aus GaInP absorbiert Strahlung zwischen 300 und 670nm, die GaAs-Zelle zwischen 500 + 890nm und die Si-Zelle zwischen 650 und 1180nm

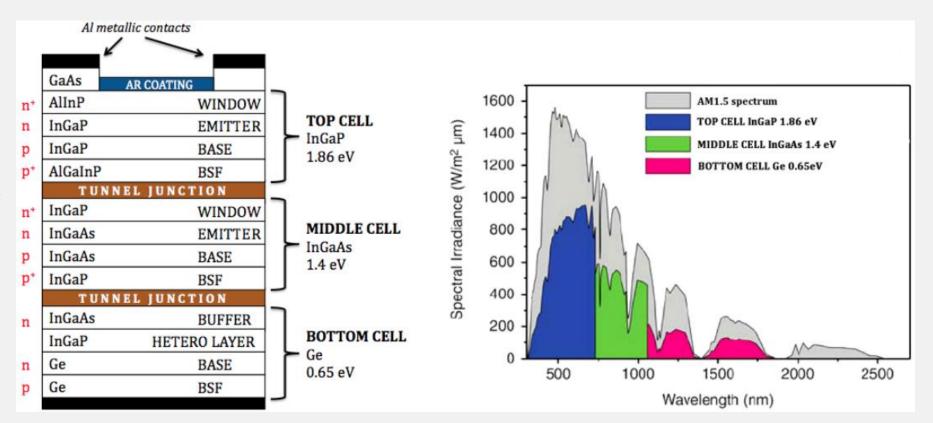


Abb.: li Schichtaufbau Zelle, re. genutzter Wellenlängenbereich, Quelle: Wikipedia

Zelltechnologie: Tandem Mehrschichtsolarzellen sog. III-V-Halbleiter

- ➤ Vorteil:
 - --> Nutzung der nahezu kompletten Wellenlänge des Lichtspektrums
 - --> deutliche Leistungssteigerung (im Labor >40% Zelleffizienz gezeigt)
- ➤ Nachteil:
 - --> extrem aufwändig in der Herstellung
 - --> Langzeitstabilität aktuell nicht gegeben (Lichtdegradation,

Feuchtigkeit)

- --> teuer in der Herstellung
- > Entwicklungspotential:
 - --> extrem interessante Zelle
 - --> es wird seit mehrere Jahren daran geforscht und versucht diese Zelle serienreif zu bekommen (Bsp. Fraunhofer ISE, Oxford PV)

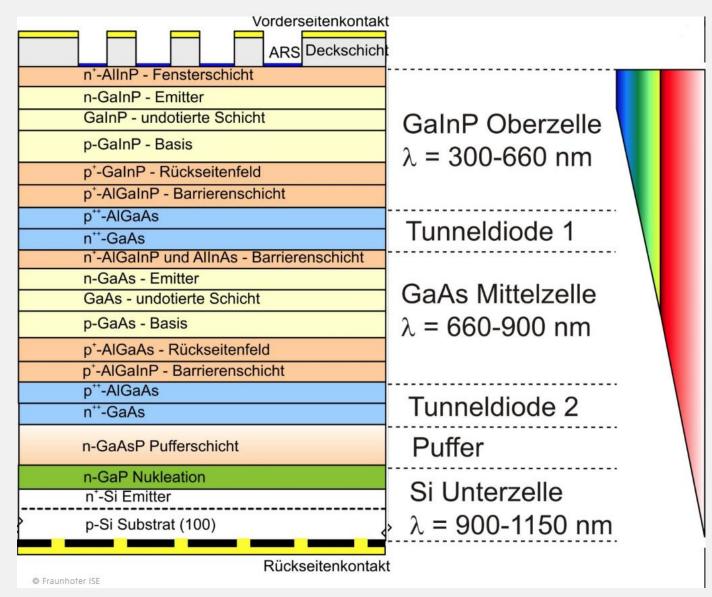


Abb.: li Schichtaufbau der Zelle, re. genutzter Wellenlängenbereich Quelle: Fraunhofer ISE, Dr. Frank Dimroth

Zelltechnologie: Backcontact Solarzellen

- > Aufbau:
 - --> die Frontkontakte sind auf die Rückseite verlegt
- > Vorteil:
 - --> Steigerung des Wirkungsgrades durch Erhöhung der aktiven Zellfläche vorderseitig
 - --> extrem homogenes Bild, speziell bei Fullblack-Modulen
- > Nachteil:
 - --> aufwändig in der Herstellung
- > Entwicklungspotential:
 - --> seit vielen Jahren, früher als Nischenprodukt, im Einsatz
 - --> Durchbruch in der Massenproduktion seit 1-2 Jahren durch z.Bsp. AIKO, LONGi usw.

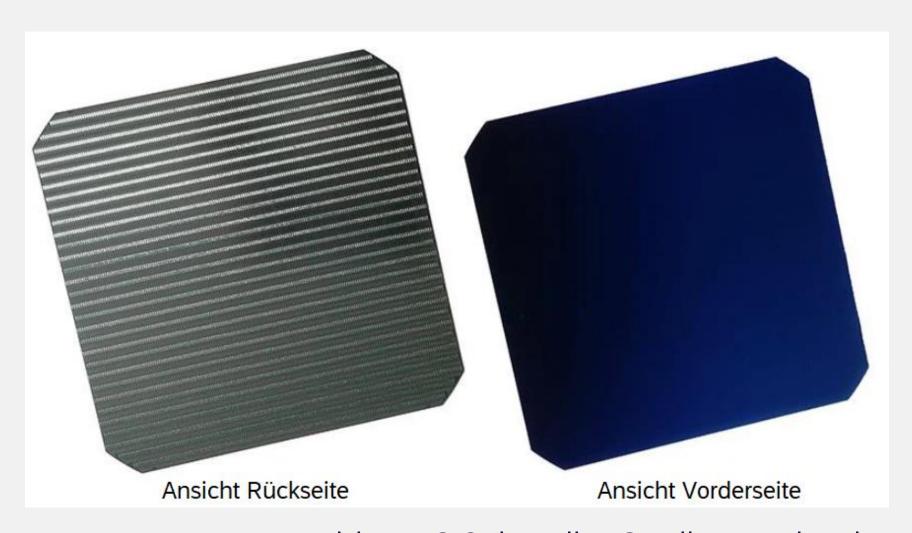


Abb.: IBC Solarzelle; Quelle: instylesolar

Zelltechnologie: Backcontact Solarzellen

- > Schematischer Schichtaufbau einer Rückkontaktzelle im Vergleich zur klassischen Aluminium Backsurface PERC Zelle
- > Verschiedenste Ansätze, wie Kontakte auf die Rückseite verlegt werden können

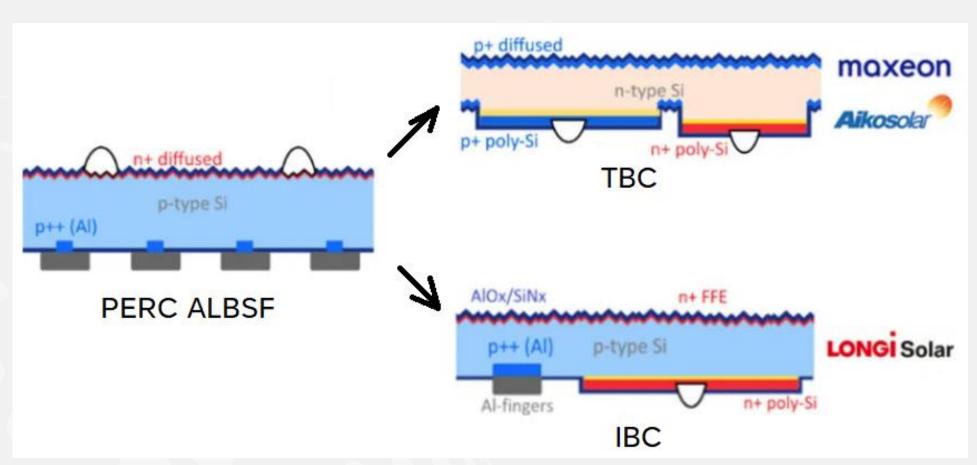
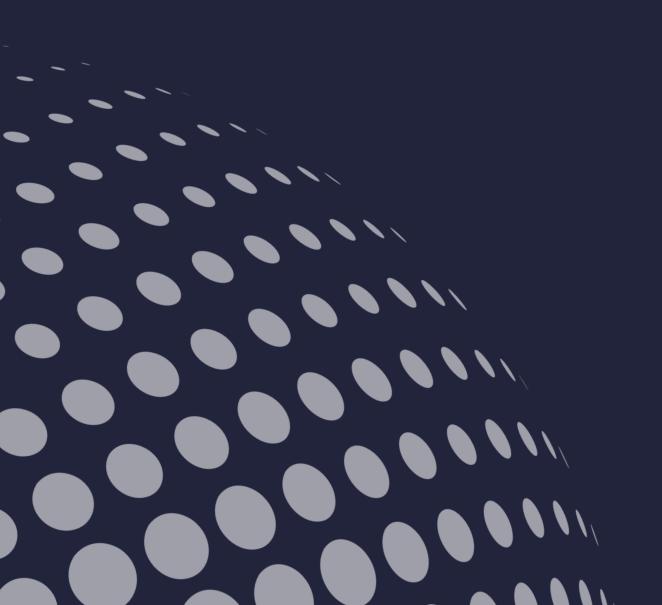



Abb.: IBC Solarzellen im Vgl. zu PERC; Quelle: PV-Tech

4. AUSBLICK

Welche technologischen Trends haben das Potential umgesetzt zu werden?

> Moduldesign:

- Modulgröße: Änderungen im Modulformat in der Breite nein, in der Länge ab 2025 ja (2m² Grenze fällt)
- Glasdicke: Reduzierung auf 1.6mm sehr wahrscheinlich, wird sicher neuer Standard im Residential Bereich
- Busbar-Anzahl: Steigerung BB-Anzahl vorerst nicht zu erwarten, Trend geht langfristig in Richtung Multiwire
- Bifazialität: auf dem Vormarsch, wird monofaziale Module bereits mittelfristig komplett verdrängen
- Rahmenhöhe wird mittelfristig bei 30mm bleiben, kostengünstigere Materialien wie Kunststoff könnten langfristig kommen
- Layout: Abstände im Modul sind weitestgehend optimiert, keine Änderung zu erwarten

> Zellformate:

- starker Trend in Richtung rechteckige Zellen (Achtung: Stromerhöhung auf ISC >16 A)
- G12 R wird wahrscheinlich Ende 2024 der Mainstream werden

> Zelltechnologien

- Tandem: mittelfristig kein Thema, langfristig ab 2028 großes Potential
- Rückkontaktzellen: mittelfristig sehr wahrscheinlich ein Massenprodukt, Wettbewerbsfähigkeit gegenüber extrem preisgünstigeren M10R und G12R TOPCon Module fraglich

HABEN SIE NOCH FRAGEN?

Ronny Köhler

Leiter Qualitätssicherung & Qualitätsmanagement, R&D

- +49 371 458568 221
- koehler@heckert-solar.com
- www.heckertsolar.com